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Expansion functions are presented for two-dimensional incompressible fluid flow
in arbitrary domains that optimally conserve the 2D structure of vortex dynamics. This
is obtained by conformal mapping of the domain onto a circle and by constructing
orthogonal radial polynomials and angular harmonics on the new domain such that
the kinetic energy is diagonal and the separate components satisfy all of the required
physical boundary conditions. © 2000 Academic Press
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1. INTRODUCTION

The immediate reason for this paper is two fairly recent publications on spectral calc
tions of vortex dynamics of two-dimensional incompressible flow in circular domains [.
The spectral representations exploited in those papers consist of products of orthoc
polynomials for the radial direction and harmonic functions for the angular direction. T
polynomials are constructed on the basis of an inner product that is called “natural”
that leads to a special class of Jacobi polynomials which is described in detail. Appare
Verkley is not aware of similar sets of expansion functions that were derived by the pre:
author in 1974 for the purpose of high-beta stability calculations and extensively used s
then for stability problems of a variety of configurations [2—7], including that of the joil
European torus [8]. The reason may be that the stress in the mentioned publications
on results rather than methods. In particular, the expansion functions developed were
mentioned in passing, although somewhat more extensively in Ref. [7], but never discu
in detail. More important for the present purpose is that the functions turned out to be g
effective for the tokamak stability calculations since they were constructed on the bas
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completely different choices for the inner product and the boundary conditions than th
made in Ref. [1]. Also, they allowed for straightforward generalisation to arbitrary domail
Because of the present interest in vortex dynamics in two dimensions, it appears approy
to make these methods available for wider applications than tokamak stability theory al

2. INCOMPRESSIBLE TWO-DIMENSIONAL FLOW

2.1. Basics

Exploiting cylindrical coordinateg, 6, z), incompressible fluid flow in two dimensions
(0/0z=0) is represented by

v V_8w +18w
T o r 90

= 0, UV = 0, (1)
so that the two velocity components in the transverse plane may be derived from a si
stream functiorS= S(r, 6, t):
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v=e6exVS ie,vy =——, = —.
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The most important dynamical variable is the vorticity, which turns out to be the Laplaci
of the stream function:

19 8S 192S

=6, - VxV=V2S=-"—r— 4 - —_. 3
w=6& VX ror ar + r2 962 ®)
Its advection is given by

Dw Jw ow w

bt — gt TV Ve = g te VS Vo= Sl @)

where another quantity of interest appears, viz. the Poisson bracket for arbitrary funct
F(,0) andG(r, 0):

F.G}l=6- -(VF xVG) = -
(F.Cl =& (VF xVC) ar 90 90 or

r

l(aF G oF 8G>. ®)
Clearly, numerical calculation of incompressible two-dimensional flow should pay part
ular attention to an accurate representation of the stream function and its derivative
appearing in the Laplacian and the Poisson brackets. Moreover, even though the pro
has been reduced to a single scalar unkn@yit is important to recall that the actual
physics involves the velocity vecter We will see that this more or less determines hov
the representation of the stream function in expansion functions should be chosen. ¢
we are not concerned with the actual calculation of the dynamics in this paper, from r
on we will suppress the dependence on tim&#a S(r, 6, t).

Potential, i.e., incompressible and irrotational flow on an arbitrary domain in two dime
sions, is basically solved by finding the conformal mapping to the unit disk. Obvious
vortical flow in an arbitrary domain is not solved that easily, but conformal mapping of t
boundary to a circle greatly facilitates the solution by means of the fast Fourier transf
(FFT). We relegate the discussion on how such a mapping is obtained to Section 2.2
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FIG.1. Conformal mapping of an arbitrary domain bounded by the cGrirethe physicak-plane to the unit
disk in the computationab-plane wherav =0 is the image of an arbitrary interior point= 5. This mapping is
produced by an explicit Moebius transformation followed or preceded by a numerical Henrici transformatior

= C: r=f@)

assume thaz=z(w) is known. Herez represents the physical plane where the flow i
supposed to be bounded by an arbitrary ci@venclosing the origin and represents the
mapped plane where the image of the fluid domain is the unit|disk 1 (see Fig. 1). We
introduce polar coordinatest in thew-plane, i.e.w = s€7, and choose the computational
grid {wjj } to be, e.g., equidistant miandz:

wijzsei’i,{s_l/,l’ |'_0,1,...I, ©)
7, =(j/N27, j=01,...3-1
Of course, the procedure is limited to reasonable boundary c@reesthat an acceptable
spacing of the grig(wi;) in the physical plane is obtained.

Once the conformal mapping= z(w) is known, virtually all that is needed is the scale
factorh appearing in derivatives:

d
h=h(s,r)=‘£’. (7

E.g., the velocity components corresponding to Eq. (2) become

10S 19S
= — T T= A 8
vs hsar’ ° hos ®)
and the vorticity becomes
1/18 3S 19°S
=V°S= —(ZT—s—4+=—"1), 9
@ hz(sas s &? arz) ©)
whereas the Poisson bracket transforms to
1 /9F G 9F 9G
F,.Gl= — —— - —— ). 10
{ } hzs<as at ot 83) (10)

Clearly, the conformal mapping conserves all the basic structures needed in vort
dynamical calculations.
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Since the computational domain is now circular, the stream function may be represe
as a series of products of one-dimensional radial expansion fund®g#(s) and angular
harmonice'™”,

oo

S=8(s,7) = Z Zcmann(S)eimt, (11)

m=—o0 n=0

where simple boundary conditions will be imposedR#n(s) ats=0 ands=1. Conse-
quently, all information on the stream function is now contained in the set of expans
coefficients{omn}. Here, and in the following, we write infinite sums leaving it understoo
that they are of course truncated in the numerics to some manageable size. Before wi
cuss the choice of the set of appropriate functiBag(s), we will first summarize the main
steps in the numerical construction of the conformal mapping.

2.2. Construction of the Conformal Mapping

Conformal mapping of circular and elongated domains were extensively exploitec
studies of high-beta tokamak equilibrium and stability [2—8]. In particular, in Ref. [4], tt
numerical methods involved were described in detail. Hence, we here just summarize
main ideas needed for the present purpose.

When the boundary cun@ is already a circle and we just wish to map the interior ont
itself but move an arbitrary poirt=§ onto the originw = 0, a Moebius transformation is
all that is required:

S+ w
z = . 12
1(w) 1Tt ow (12)
The scale factor for this mapping is given by
142
h(s, 7) = . 13
&%) 1+ §%s? 4+ 25scost (13)

This simple transformation was used in the mentioned studies of tokamaks with a circ
cross section to move the image of the magnetic axis onto the origin. Such a simple,
crucial, device could also be of interest for studies of vorticity dynamics, e.g., in the prese
of eccentric forcing. When the boundary cu@és not a circle, conformal mapping of the
enclosed domain in theplane onto a circle in the-plane leaving the origin invariant is
effected by a transformation that may be represented as an infinite series:

z(w) =Y pmw™. (14)
m=1

For simplicity, we here restrict the discussion to up—down symmetric boundary curve:
that the coefficientg, are real. A numerical approximation of this mapping for starlike
domains (radial lines emanating from the origin intersect the boundary only once) is obtai
by means of an extremely elegant and effective method that has grown over many y
from contributions of Theodorsen [9], Gutknecht [10], and Henrici[11, 12]. More advanc
algorithms, not requiring the domain to be starlike, are discussed as well in Ref. [11].
map an arbitrary boundary curve while also shifting the origin, the two mappirigs and
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Z>(w) may be applied in succession, eithezaz; (w)), involving an intermediate boundary
curveC’, orasz;(zx(w)), involving an intermediate shit. Except for numerical accuracy,
these two mappings should produce identical results.

We will now discuss how the numerical approximation of the coefficiéptg of the
conformal mapping,(w) is obtained, where we will drop the subscript 2. Consider a
analytic functionF = F(w) = ®(s, 1) +1 ¥ (s, 1), so that® andW are conjugate harmonic
functions. On the unit circle,

FET) =¢() +iv(r), (15)

sothatthe boundary functioggt) = ®(1, ) andy (r) = ¥ (1, 7) satisfy the Hilbert trans-
form

Y(r) = Cp+ 173% K(t —t)e(r)dr, = }Cot}(r -1, (16)
T 2 2

whereCy is a constant. Now choosirfg(w) = In[z(w) /w], these two functions become

#(m)=Inf@(r), ¥()=0(r)—r, 17)
wherer = f (9) is the boundary curv€ indicated in Fig. 1. Hence, the Hilbert transform
(16) yields Theodorsen'’s nonlinear integral equation [9]:

O(r) =1+ %’P?{ Kz =1t)Inf@G))dr. (18)

This equation was exploited in early studies of wing design. Its (iterative) solution conver
to the required boundary correspondence fundiesd (t), which is all that is needed to
fix the conformal mapping(w).

Henrici showed that the iterative solution of Theodorsen’s integral equation really |
comes a trifle by the exploitation of FFTs. This results from the identity character of
Fourier expansion of the kernel K:

K(t—-1)= Z sinm(r — 7). (19)

m=1

This implies that the Fourier coefficienta(" } appearing in thén)th step of the solution
of the boundary function,

1 o0
() — oM " gi
Inf(6™(z)) = 5%+ > aly sinmr, (20)
m=1
and the Fourier coefficient®+?} appearing in thén + 1)th step,
oMY (1) — ¢ = Z b" Y sinme, (21)

m=1

are connected through the identity transformation:

b —a®™  (m £ 0). (22)
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Hence, the iterative solution of Theodorsen’s equation is obtained by means of what ¢
be called a fast Hilbert transform, i.e., two fast Fourier transforms in succession:

= {n £ @)} 5 (e} - (0] BT (00 —n) g 2g)

Onced (1) is known, i.e., the mapping is known on the boundary, the coefficieptsmay
be obtained again by fast Fourier transformation,

2(é7) = 101’ T {pn), (24)

so that the conformal mappirejw) is known everywhere.

In the tokamak stability studies mentioned, the influence of an external vacuum was
investigated. Such an external vacuum constitutes a doubly connected domain of arbi
shape for which the construction of a conformal mapping to an annular region gre:
simplifies the stability analysis. This mapping problem was studied in the past as wel
connection with the wing design of biplanes [13]. Here, the counterpart of Theodorse
integral equation is Garrick’s integral equation for which Henrici’'s method works as we
A double set of Fourier coefficients is now exploited, corresponding to the Laurent se
expansion of analytic functions in an annulus. We will not discuss this method further sii
it has been extensively described in Ref. [4]. Again, it could profitably be exploited in vort
dynamics of incompressible flow in annular domains, as studied, e.g., in Ref. [14].

2.3. Inner Products

We will now fix a set of two-dimensional expansion functions
San(s, T) = Ran(8)€™, (25)

according to the conditions outlined in Section 2.1. This is mainly dictated by the choice
aninner product for these functions. However, we recall that the actual physics is determ
by the velocity vector field. Since the accurate representation of the kinetic energy is
crucial importance, both in linear stability of tokamaks and in nonlinear vortex dynami
the most relevant normalization of these variables is the following one:

1
K= /p|v|2dv = IVI? = (v, V). (26)

Here, the index (2V) indicates that the inner product refers to 2D vectors. We will also int
duce an inner product for 2D scalars, like the stream fun@ignr), indicated by the index
(2S), and an inner product for 1D functions, like the expansion functi@ngs), indicated
by the index (1). However, these additional definitions will be completely determined
the choice for the 2D vector inner product.

Let us exploit dimensionless variables by dividing out the total volveera?L, where
a measures the radial size of the domain &ntthe size in the ignorable direction, and the
densityp, which is assumed to be constant. The relevant inner product for 2D vectors r
then be defined as

21
(V1, V2)av) = / / Vi -voh’sdsd. (27)
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The resulting definition for the inner product of 2D scalars reads

1 Y1050 9S0S
<S_I.a SZ>(ZS):E/O/O (??E"‘gE)Sde, (28)

and for 1D functions
1 m2
(Ri, Ro)yy = / [? Ri(S)Ra(s) + R’l(S)R’z(S)]sds (29)
0

where the prime denotes differentiation with respecs.tblote how the latter two inner
products have become independent of the scale factor of the conformal mapping. Ir
last definition, the appearance of the constatitetrays the two-dimensional origin of this
inner product. Clearly, these 1D radial functions are always to be considered together
the angular factord™”.

We will now demand the 1D expansion functioRgn(s) to be orthonormal with respect
to the inner product (29):

2

1
(Rmn. Rmv) (1) =/0 {m Rnn(S) Rnw(8) + Ryyn(S) Ry, (9) | S ds= 8. (30)

s2

This implies that the 2D expansion functioBsn(s, t), defined by Eq. (25), will be or-
thonormal with respect to the inner product (28):

<ST‘IH7 SLV)(ZS = (Smp,amw (31)

Consequently, the inner product of two stream functi&nandS; expressed as in Eq. (11)
will be given by the diagonal sum

(Sl» SZ)(ZS) = Z Zaimnoé,mn' (32)
m=—o00 n=0
Similarly
K=(Veoy=(SSes= > > loml (33)
m=—o00 n=0

In this manner, both the vector character of the flow and the stream function constrain
are fully exploited.

The 2D structure of the problem may be articulated some more by considering
expansion of the radial and angular components of the velocgyzdrtoordinates,

o0

ihvs(s, 7) = Z Zamnxmn(s)eimr,

m=—o00 n=0

hv (s, 1) = Z ZamnYmn(s)eimr»

m=—oo n=0

(34)
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where the functions
Xmn(S) = (m/S)Rmn(S), Ymn(S) = Rf/ﬂn(s) (35)

would represent the radial and angular parts of expangotorfunctions. Both contribute
to the inner product of the 1D expansion functions, which may be written as

1
(Roms R = /0 [Xeun(S) X (8) -+ Yin(S) Y ()] dS= 5. (36)

Parenthetically, it should be noted that the expansion functi@npgs), and their compan-
ions Xmn(s) andYnn(s), could also be exploited to represent compressible fluid flow. Tw
differentsets of expansion coefficients,, andzyn, should then be used in Eq. (34) for the
representation ofg andv,.

In Section 3, we will construct the functioi®,, explicitly, based on the inner product
(30).

3. ORTHOGONAL POLYNOMIALS

3.1. Boundary Conditions and Reduction to Standard Form

We wish to construct the polynomial representation of the 1D expansion fun&igis),
based on the orthonormality condition (30) and satisfying simple boundary condition:
s=0ands=1. Since the inner product definition (29) is not of a standard type, we neec
perform some analysis to produce the explicit expressions and to obtain the relations
with standard (Jacobi) polynomials.

With respect to the boundary conditions, we impose the following constraints on
polynomials:

(1) Close to the origirs =0, we demand radial behavior &,n(s) consistent with
the angular factord™, i.e.,

Ran~ ™ (s« 1); (37)

(2) Atthe boundarg =1, we permittwo kinds of boundary conditions, correspondin
to either fixed or free boundaries. For fixed boundary problems, we demand vanishin
the normal velocity component corresponding to eBgh separately, i.e.,

1 9Sm
hs a7t |

N-V|s—1 = vs = — =0= Rnm() =0 (n=>1). (38)
Hence, to satisfy the fixed boundary condition, there is no need for superposition! For
boundary problems, the normal velocity component should attain prescribed valug

at the boundary. This is affeced by extending the{8&t,} with one additional function
Rmo for each value ofn, such that

whereas the remaininBm,’'s should still satisfy Eq. (38). In this case, superposition of th
Rmo’s is needed to produce the prescribed boundary valuesof
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Surprisingly, these restrictive conditions still admit two distinct classes of solutions,
be called orthogonal polynomials of the first and of the second class. We will discuss t
of them.

We implement the condition (37) by writing

Rnn(S) = $™ Tmn(s), (40)

where theT,'s are auxiliary polynomials that facilitate the reduction of the inner produ
(30) to a standard expression after integration by parts:

1
(Renn, R) oy = / ST (9 T (9 dS+ M Tnn(D Ty (1) = 8n. (42)
0
Hence, the condition (39) for the free-boundary components may be satisfied by the ct
Tmo(s) = const= |m|~Y2, (42)

whereas the condition (38) for the fixed-boundary components is then satisfied by impo
Tmn(1) = 0 so that the inner product reduces to

1
/ SZ\mHlTn’m(s)Tr;w (s)ds=36,, (n,v #£0). (43)
0

The latter expression is now of a standard type so thalfhis may be written as Jacobi
polynomials [15]:

2/m| + 2n — DL/20m[ T 1)
() = ¢ 'm|(n+_”l)|(2)|m| J:'rr:)‘||+n)en_l(2|m| +2,2m+2,5)

3 - (=)*'2Im| +2n — 3)! n
= va2(mi+mn ; D mi@main_iznc 070 @9

Integration produces the explicit expressions for the polynorijglés) themselves so that
the polynomialsRnn(s) are determined as well.

The auxiliary polynomialsln(s) just produced consist of even and odd powers.of
The associated orthogonal polynomiBig,(s) will be called polynomials of the first class.
As mentioned above, another set can be derived that also satisfies all of the formu
conditions. They will be called orthogonal polynomials of the second class and design
with a tilde. Their existence is evident from the expression (43) which may be transforr
to even powers of by introducing the variablé = s? so that the orthonormality condition
becomes

1 ~ .
2/0 glmi-+1 d;_? d;_ém dé = 8p,. (45)

Hence, the expression fdif ,, /dé may be obtained from Eq. (44) by applying the trans
formations

Toi—>v2dT mn/dé, s—&, 2im|—|m|. (46)
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Integration provided 1, and, returning to the variabfeagain, the explicit expressions for
the polynomialsRnn(s) of the second class. The transformation (46) implies the followin
relationship between the two sets of polynomials,

1

7 Rmn(s?), (47)

Ii2m.n(5) =

i.e., them-polynomials of the first class relate to the-dolynomials of the second class.
Since the polynomials always have to be considered together with their angular factors,
shows that the associated 2D expansion funct@®rgs, t) and Sun(s, 7) are really two
different sets.

Maybe nottoo surprising, properly scaled Bessel functions also satisfy the orthonorm:
condition (30) and the boundary conditions (37) and (38). Moreover, they can be exten
with the same free-boundary functions as the polynonfRals and R Distinguishing
them with a circumflex, they read

12dm (=Rmo(s) = Rmo(9)),
V2

ﬁmn = +Jm 'mn = 1 s
© = Jondn 1 (1= D

Rmo(S) = m|~ us)

wherejmn indicates the successive zeroslgf The reason to prefer the polynomi&gn(s)
andRmn(s) in the numerics is that they are much easier to manipulate and that they obv
the task of having to compute all those zeros.

In order to exploit the polynomialRy, and Ry, all their properties should be derived.
This involves considerable and, as noted by one author [16], rather addictive algebra
will not be presented here. The results are just stated in Sections 3.2 and 3.3.

3.2. Polynomials of the First Class

The explicit expressions for the polynomials of the first class read {00,

Rmo(s) = [m|~*2s, (49)
and forn>1,
n (—=D*(2|m| 4+ 2n — )! -
— ./ [m| _ oh—A+1
Rn(8) = v2(jm[ +m)s ;l(A—1)!(n—k+l)!(2|m|+n—A+1)!(1 S )-

(50)
They satisfy the recursion relation

2im+2n—1
n2im| + n)

Im| +n n—-2)@2m|+n-2) Im| +n
T R |, (51
|m|+n—1Rmnle 2lm|+2n—3 |m|+n—2Rmnz (51)

I:zmnz—

{ @m/+n—-21%24+n(n-2)

@m[+2n—1)2m|+2n—3) S}(Zlml +2n-2)
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the differential relation

Rmn: S(l—S) (|m|+n)(2|m|+2n_l) s}(|m|+n)Rmn

n-=D@2m|+n-1) Im| +n
T omiyan—1 \/ERmH], (52)

and the differential equation

1 [{|m|(2|m|+2n—1)+n(n—1) -

2
Rint 3R~ |5 ~ aq gy |Ran=0. (53)

Their computation is extremely fast and accurate: The first two polynoRiglandR., are
computed from the explicit expression (50) and all the higher order polynoRjal® > 3)
from the recursion relation (51), the derivatiigs,, from the differential relation (52), and,
if they are needed, the second order derivatives from the differential equation (53).

The lowest polynomials of the first class are plotted in Fig. 2. As compared to the Be:
functions (48), their zeros are located somewhat more to the right. Another difference oc
for them =0 polynomials, which do not have a vanishing derivative &t0: R;,,(0) 0,
whereasl%n(O) =0. Clearly, if this property is essential for the proper representation
variables it will be produced automatically in the numerics by sums of paiRg{s.

FIG. 2. Orthogonal polynomials of the first class.
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3.3. Polynomials of the Second Class

The explicit expressions for the polynomials of the second class read=f@r,

Rmo(s) = |m|~2sI, (54)
and forn>1,
~ Im|+2n_ ., s (=D*(Im[ +2n — A)! 2n—i+1)
mn == QA 1-— .
Run(8) =/ =5 ;(x—l)!(n—x+1)!(|m|+n—x+1)!( S )
(55)

They satisfy the recursion relation

= _ Im+2n-1
n(m[ +n)

mn —
Im +2n -« n=2(m+n-2) Im +2n «
—— Rmnn Rnn|, (56
“Aimtzn—2 ot T on—3 \/jmi+an—a 2| (0)

the differential relation

{ (Im+n-)°+nn-2)
(Im[+2n —D(Im[ +2n - 3)

52}(|m| +2n—-2)

o 1 {Iml(lml+2n—1)+2n(n—l)_
mn T g(1 — s?) (Im] + 2n)(Jm| +2n — 1)

on—D(m+n—1 | |m+2n -
Rmn— 57
+ Im| +2n—1 Im+2n—2 " 1]’ ®7)

and the differential equation

SZ}(|m| + 2n) |imn

1

ol o/ m2 4n(|m| + n)
Rinn + ngn - { T T 1 _ 2

2 - ] Rmn = 0. (58)
They are computed in the same manner as the polynomials of the first class.

The lowest polynomials of the second class are plotted in Fig. 3. As compared to
polynomials of the first class, their zeros are moved even further to the right so that they
further away from the Bessel functions (48) in that respect. On the other hand e
polynomials of the second class do have a vanishing derivative at the di(giﬂ:‘ 0.

Finally, the unavoidable question on which of the two kinds of polynomials is to |
preferred in the numerics cannot be answered in general terms. The answer to this que
appears to depend on where the physical phenomena tend to be localized and on
integration scheme is exploited. Our experience with stability codes indicates that the
sets are equally good for that purpose.
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FIG. 3. Orthogonal polynomials of the second class.

4. CONCLUSIONS

We have constructed two sets of two-dimensional expansion funcgprs, t) =
Rmn(s)€™ and émn(s, )= Ifzmn(s)eimf for the representation of the stream function o
incompressible 2D flow on an arbitrary domain, exploiting an inner product that is ba:
on the kinetic energy of the velocity field of the flow. The coordinatesdt refer to a
computationakw-plane obtained from the physicaiplane by conformal mapping, where
the physical boundary is mapped onto a circle inithplane. Since such a mapping need:
to be constructed only once during the computation and since it can be obtained with
dimensional accuracy (basically, it is just a way of computing a Cauchy integral alc
the boundary curve), this transformation represents negligible overhead in the nume
calculations. The one-dimensional expansion functigps(s) and F~2mn(s) are orthogonal
polynomials with respect to a nonstandard inner product that derives directly from the
netic energy of the associated 2D velocity components. Moreover, the velocity compon
associated with a single polynomial satisfy regularity conditions at the ofigin0) and
either fixed boundary conditions at the boundé&y= 1), for the n£0 components, or
free-boundary conditions, for thre= 0 components. In this manner, the physical structur
of vortex dynamics in two dimensions is optimally expressed in the separate expan
functions: For the fixed boundary case, coupling will only occur through inhomogeneit
and nonlinearities, not through the boundary conditions!

The expansion functions exploited by Verkley [1] do not have these properties si
they are based on a standard inner product for the 1D functions, so that the assoc
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normalization of the velocities will not correspond to the kinetic energy. They also do 1
satisfy the boundary conditions separately, but require superposition. These features r
enhance the reported problem of nonconservation of energy for the truncated polyno
representation which comes about from the nonlinear advection{®ri¢S} of Eq. (4).
This term vanishes for Besselfunction representatigs= Rnn€™", with Rmn given by
Eq. (48):

{S‘nn, Vzér‘nn} = jr%n{émnv ér‘nn} =0. (59)

Itdoes not vanish for the polynomial representation used in [1]. Our expansion fur§tions
andSn, do not eliminate this term either since they are not eigenfunctions of the Laplaci
as follows from the differential equations (53) and (58)Raf, and Rmn. However, they do
not produce additional higher order terms through the boundary conditions.

In the tokamak stability calculations [2—8], the expansion functi§psand Sy, auto-
matically avoid the problem of spectral pollution [17] because of the built-in balance
the representation of the normal and tangential velocity components. Moreover, confor
mapping can be replaced by other kinds of mappings that may be more relevant for
physics of the problem, like the much exploited system of nonorthogonal flux coordine
with a straight field line representation. Heseand t are replaced by/¥ and®, where
¥ is the poloidal magnetic flux and is a poloidal angle constructed such that the mac
netic field lines become straight in thle— ¥ plane. Expansion functior§,n(./v¥, ¢#) and
Sun(V¥, ©), with the same orthogonal polynomials of the first and second class, have b
successfully exploited [6, 7], even though the kinetic energy is hecessarily nondiagon:
that case.

We conclude that the constructed polynomials are perfectly suited for numerical ca
lations and computer algebra of vortex dynamics.

ACKNOWLEDGMENTS

This work was performed as part of the research program of the association agreement of Euratom ar
“Stichting voor Fundamenteel Onderzoek der Materie” (FOM) with financial support from the “Nederlanc
Organisatie voor Wetenschappelijk Onderzoek” (NWO) and Euratom.

REFERENCES

1. W. T. M. Verkley, A Spectral model for two-dimensional incompressible fluid flow in a circular basin. I, |
J. Comput. Physl36, 100 (1997)136, 115 (1997).

2. J. P. Freidberg and J. P. Goedbloed, Equilibrium and stability of a diffuse high-beta tokarfalsed High
Beta Plasmasedited by Evans (Pergamon Press, Oxford, 1976), p. 117.

3. J. P. Goedbloed, Conformal mapping methods in two-dimensional magnetohydrodyr@amgs, Phys.
Comm.24, 311 (1981).

4. J. P. Goedbloed, Free-boundary high-beta tokamaks. I, IPhlys. Fluids25, 852 (1982)25, 2062 (1982);
25,2073 (1982).

5. J.P.Goedbloed, G. M. D. Hogewey, R. Kleibergen, J. Rem, R. M. Oa@Batid P. H. Sakanaka, Investigation
of high-beta tokamak stability with the program HBT, fmoc. Tenth International IAEA Conference on
Plasma Physics and Controlled Fusion Research, London, 12-19 Septembe{lAB84 Vienna, 1985),
\ol. 2, p. 165.



10.

11.
12.

13.
14.

15.
16.
17.

2D INCOMPRESSIBLE FLUID FLOW 297

. J. P. Goedbloed, R. Kleibergen, and J. Rem, Flux coordinate studies of elongated plasmas at high b
Proc. 14th European Conference on Controlled Fusion and Plasma Physics, Madrid, June 22-2&RS87
1987), Vol. lll, p. 1095.

. R. Kleibergen and J. P. Goedbloed, Afvivave spectrum of an analytic high-beta tokamak equilibrium
Plasma Phys. Contr. Fusid3D, 1961 (1988).

. G.T. A. Huysmans, T. C. Hender, O. J. Kwon, J. P. Goedbloed, E. Lazzaro, and P. Smeulders, MHD sta
analysis of high8 JET discharges$?lasma Phys. Contr. Fusiddd, 487 (1992).
. T. Theodorsen, NACA Report 411 (1931).

M. H. Gutknecht, Existence of a solution of the discrete Theodorsen equation for conformal magpihgs,
Comput.31, 478 (1977).

P. Henrici, Fast Fourier methods in computational complex anaBigi8/ Rev21, 481 (1979).

P. HenriciApplied and Computational Complex Analysis. Vol. 3 Discrete Fourier Analysis-Cauchy Integra
Construction of Conformal Maps-Univalent Functidivgiley, New York, 1986).

T. Garrick,Potential Flow about Arbitrary Biplane Wing Sectig®ACA Report 542 (1936).

M. Elghaoui and R. Pasquetti, Mixed spectral-boundary element embedding algorithms for the Navier—S;
equations in the vorticity-stream function formulati@gmput. Phys153 82 (1999).

M. Abramowitz and |. A. Segujandbook of Mathematical Functiof®over, New York, 1968).
J. RiordanCombinatorial IdentitiegWiley, New York, 1968).

R. Gruber and J. Rappdnite Element Methods in Linear Ideal Magnetohydrodynar(@winger-Verlag,
Berlin, 1985).



	1. INTRODUCTION
	2. INCOMPRESSIBLE TWO-DIMENSIONAL FLOW
	FIG. 1.

	3. ORTHOGONAL POLYNOMIALS
	FIG. 2.
	FIG. 3.

	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

