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Expansion functions are presented for two-dimensional incompressible fluid flow
in arbitrary domains that optimally conserve the 2D structure of vortex dynamics. This
is obtained by conformal mapping of the domain onto a circle and by constructing
orthogonal radial polynomials and angular harmonics on the new domain such that
the kinetic energy is diagonal and the separate components satisfy all of the required
physical boundary conditions. c© 2000 Academic Press
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1. INTRODUCTION

The immediate reason for this paper is two fairly recent publications on spectral calcula-
tions of vortex dynamics of two-dimensional incompressible flow in circular domains [1].
The spectral representations exploited in those papers consist of products of orthogonal
polynomials for the radial direction and harmonic functions for the angular direction. The
polynomials are constructed on the basis of an inner product that is called “natural” and
that leads to a special class of Jacobi polynomials which is described in detail. Apparently,
Verkley is not aware of similar sets of expansion functions that were derived by the present
author in 1974 for the purpose of high-beta stability calculations and extensively used since
then for stability problems of a variety of configurations [2–7], including that of the joint
European torus [8]. The reason may be that the stress in the mentioned publications was
on results rather than methods. In particular, the expansion functions developed were only
mentioned in passing, although somewhat more extensively in Ref. [7], but never discussed
in detail. More important for the present purpose is that the functions turned out to be quite
effective for the tokamak stability calculations since they were constructed on the basis of

283

0021-9991/00 $35.00
Copyright c© 2000 by Academic Press

All rights of reproduction in any form reserved.



284 J. P. GOEDBLOED

completely different choices for the inner product and the boundary conditions than those
made in Ref. [1]. Also, they allowed for straightforward generalisation to arbitrary domains.
Because of the present interest in vortex dynamics in two dimensions, it appears appropriate
to make these methods available for wider applications than tokamak stability theory alone.

2. INCOMPRESSIBLE TWO-DIMENSIONAL FLOW

2.1. Basics

Exploiting cylindrical coordinates(r, θ, z), incompressible fluid flow in two dimensions
(∂/∂z= 0) is represented by

∇ · v = ∂vr

∂r
+ 1

r

∂vθ

∂θ
= 0, vz = 0, (1)

so that the two velocity components in the transverse plane may be derived from a single
stream functionS= S(r, θ, t):

v = ez×∇S, i.e., vr = −1

r

∂S

∂θ
, vθ = ∂S

∂r
. (2)

The most important dynamical variable is the vorticity, which turns out to be the Laplacian
of the stream function:

ω ≡ ez · ∇ × v = ∇2S= 1

r

∂

∂r
r
∂S

∂r
+ 1

r 2

∂2S

∂θ2
. (3)

Its advection is given by

Dω

Dt
≡ ∂ω

∂t
+ v · ∇ω = ∂ω

∂t
+ ez · ∇S×∇ω ≡ ∂ω

∂t
+ {S, ω}, (4)

where another quantity of interest appears, viz. the Poisson bracket for arbitrary functions
F(r, θ) andG(r, θ):

{F,G} ≡ ez · (∇F ×∇G) = 1

r

(
∂F

∂r

∂G

∂θ
− ∂F

∂θ

∂G

∂r

)
. (5)

Clearly, numerical calculation of incompressible two-dimensional flow should pay partic-
ular attention to an accurate representation of the stream function and its derivatives as
appearing in the Laplacian and the Poisson brackets. Moreover, even though the problem
has been reduced to a single scalar unknownS, it is important to recall that the actual
physics involves the velocity vectorv. We will see that this more or less determines how
the representation of the stream function in expansion functions should be chosen. Since
we are not concerned with the actual calculation of the dynamics in this paper, from now
on we will suppress the dependence on time inS= S(r, θ, t).

Potential, i.e., incompressible and irrotational flow on an arbitrary domain in two dimen-
sions, is basically solved by finding the conformal mapping to the unit disk. Obviously,
vortical flow in an arbitrary domain is not solved that easily, but conformal mapping of the
boundary to a circle greatly facilitates the solution by means of the fast Fourier transform
(FFT). We relegate the discussion on how such a mapping is obtained to Section 2.2 and
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FIG. 1. Conformal mapping of an arbitrary domain bounded by the curveC in the physicalz-plane to the unit
disk in the computationalw-plane wherew= 0 is the image of an arbitrary interior pointz= δ. This mapping is
produced by an explicit Moebius transformation followed or preceded by a numerical Henrici transformation.

assume thatz= z(w) is known. Here,z represents the physical plane where the flow is
supposed to be bounded by an arbitrary curveC enclosing the origin andw represents the
mapped plane where the image of the fluid domain is the unit disk|w| ≤1 (see Fig. 1). We
introduce polar coordinatess, τ in thew-plane, i.e.,w= sei τ , and choose the computational
grid {wi j } to be, e.g., equidistant ins andτ :

wi j = si e
i τ j ,

{
si = i /I , i = 0, 1, . . . I ,

τ j = ( j/J)2π, j = 0, 1, . . . J − 1.
(6)

Of course, the procedure is limited to reasonable boundary curvesC so that an acceptable
spacing of the gridz(wi j ) in the physical plane is obtained.

Once the conformal mappingz= z(w) is known, virtually all that is needed is the scale
factorh appearing in derivatives:

h = h(s, τ ) =
∣∣∣∣ dz

dw

∣∣∣∣. (7)

E.g., the velocity components corresponding to Eq. (2) become

vs = − 1

hs

∂S

∂τ
, vτ = 1

h

∂S

∂s
, (8)

and the vorticity becomes

ω = ∇2S= 1

h2

(
1

s

∂

∂s
s
∂S

∂s
+ 1

s2

∂2S

∂τ 2

)
, (9)

whereas the Poisson bracket transforms to

{F,G} = 1

h2s

(
∂F

∂s

∂G

∂τ
− ∂F

∂τ

∂G

∂s

)
. (10)

Clearly, the conformal mapping conserves all the basic structures needed in vorticity
dynamical calculations.
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Since the computational domain is now circular, the stream function may be represented
as a series of products of one-dimensional radial expansion functionsRmn(s) and angular
harmonicseimτ ,

S= S(s, τ ) =
∞∑

m=−∞

∞∑
n=0

σmnRmn(s)e
imτ , (11)

where simple boundary conditions will be imposed onRmn(s) at s= 0 ands= 1. Conse-
quently, all information on the stream function is now contained in the set of expansion
coefficients{σmn}. Here, and in the following, we write infinite sums leaving it understood
that they are of course truncated in the numerics to some manageable size. Before we dis-
cuss the choice of the set of appropriate functionsRmn(s), we will first summarize the main
steps in the numerical construction of the conformal mapping.

2.2. Construction of the Conformal Mapping

Conformal mapping of circular and elongated domains were extensively exploited in
studies of high-beta tokamak equilibrium and stability [2–8]. In particular, in Ref. [4], the
numerical methods involved were described in detail. Hence, we here just summarize the
main ideas needed for the present purpose.

When the boundary curveC is already a circle and we just wish to map the interior onto
itself but move an arbitrary pointz= δ onto the originw= 0, a Moebius transformation is
all that is required:

z1(w) = δ + w
1+ δw . (12)

The scale factor for this mapping is given by

h(s, τ ) = 1− δ2

1+ δ2s2+ 2δscosτ
. (13)

This simple transformation was used in the mentioned studies of tokamaks with a circular
cross section to move the image of the magnetic axis onto the origin. Such a simple, but
crucial, device could also be of interest for studies of vorticity dynamics, e.g., in the presence
of eccentric forcing. When the boundary curveC is not a circle, conformal mapping of the
enclosed domain in thez-plane onto a circle in thew-plane leaving the origin invariant is
effected by a transformation that may be represented as an infinite series:

z2(w) =
∞∑

m=1

ϕmw
m. (14)

For simplicity, we here restrict the discussion to up–down symmetric boundary curves so
that the coefficientsϕm are real. A numerical approximation of this mapping for starlike
domains (radial lines emanating from the origin intersect the boundary only once) is obtained
by means of an extremely elegant and effective method that has grown over many years
from contributions of Theodorsen [9], Gutknecht [10], and Henrici [11, 12]. More advanced
algorithms, not requiring the domain to be starlike, are discussed as well in Ref. [11]. To
map an arbitrary boundary curve while also shifting the origin, the two mappingsz1(w) and
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z2(w)may be applied in succession, either asz2(z1(w)), involving an intermediate boundary
curveC′, or asz1(z2(w)), involving an intermediate shiftδ′. Except for numerical accuracy,
these two mappings should produce identical results.

We will now discuss how the numerical approximation of the coefficients{ϕm} of the
conformal mappingz2(w) is obtained, where we will drop the subscript 2. Consider an
analytic functionF = F(w)=Φ(s, τ )+ i Ψ(s, τ ), so thatΦ andΨ are conjugate harmonic
functions. On the unit circle,

F(ei τ ) = φ(τ)+ iψ(τ), (15)

so that the boundary functionsφ(τ)≡Φ(1, τ ) andψ(τ)≡Ψ(1, τ ) satisfy the Hilbert trans-
form

ψ(τ) = C0+ 1

π
P
∮

K (τ − τ ′)φ(τ ′) dτ ′, K ≡ 1

2
cot

1

2
(τ − τ ′), (16)

whereC0 is a constant. Now choosingF(w)≡ ln[z(w)/w], these two functions become

φ(τ) ≡ ln f (θ(τ )), ψ(τ) ≡ θ(τ )− τ, (17)

wherer = f (θ) is the boundary curveC indicated in Fig. 1. Hence, the Hilbert transform
(16) yields Theodorsen’s nonlinear integral equation [9]:

θ(τ ) = τ + 1

π
P
∮

K (τ − τ ′) ln f (θ(τ ′)) dτ ′. (18)

This equation was exploited in early studies of wing design. Its (iterative) solution converges
to the required boundary correspondence functionθ = θ(τ ), which is all that is needed to
fix the conformal mappingz(w).

Henrici showed that the iterative solution of Theodorsen’s integral equation really be-
comes a trifle by the exploitation of FFTs. This results from the identity character of the
Fourier expansion of the kernel K:

K (τ − τ ′) =
∞∑

m=1

sinm(τ − τ ′). (19)

This implies that the Fourier coefficients{a(n)m } appearing in the(n)th step of the solution
of the boundary function,

ln f
(
θ(n)(τ )

) = 1

2
a(n)0 +

∞∑
m=1

a(n)m sinmτ, (20)

and the Fourier coefficients{b(n+1)
m } appearing in the(n+ 1)th step,

θ(n+1)(τ )− τ =
∞∑

m=1

b(n+1)
m sinmτ, (21)

are connected through the identity transformation:

b(n+1)
m = a(n)m (m 6= 0). (22)
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Hence, the iterative solution of Theodorsen’s equation is obtained by means of what could
be called a fast Hilbert transform, i.e., two fast Fourier transforms in succession:

→{ ln f
(
θ(n)(τi )

)} FFT−−→{
a(n)m

} I−→ {
b(n+1)

m

} FFT+−→ {
θ(n+1)(τi )− τi

}
— (23)

Onceθ(τ ) is known, i.e., the mapping is known on the boundary, the coefficients{ϕm}may
be obtained again by fast Fourier transformation,

z(ei τ ) = f (θ(τ ))ei θ(τ ) FFT−−→{ϕm}, (24)

so that the conformal mappingz(w) is known everywhere.
In the tokamak stability studies mentioned, the influence of an external vacuum was also

investigated. Such an external vacuum constitutes a doubly connected domain of arbitrary
shape for which the construction of a conformal mapping to an annular region greatly
simplifies the stability analysis. This mapping problem was studied in the past as well in
connection with the wing design of biplanes [13]. Here, the counterpart of Theodorsen’s
integral equation is Garrick’s integral equation for which Henrici’s method works as well.
A double set of Fourier coefficients is now exploited, corresponding to the Laurent series
expansion of analytic functions in an annulus. We will not discuss this method further since
it has been extensively described in Ref. [4]. Again, it could profitably be exploited in vortex
dynamics of incompressible flow in annular domains, as studied, e.g., in Ref. [14].

2.3. Inner Products

We will now fix a set of two-dimensional expansion functions

Smn(s, τ ) ≡ Rmn(s)e
imτ , (25)

according to the conditions outlined in Section 2.1. This is mainly dictated by the choice of
an inner product for these functions. However, we recall that the actual physics is determined
by the velocity vector fieldv. Since the accurate representation of the kinetic energy is of
crucial importance, both in linear stability of tokamaks and in nonlinear vortex dynamics,
the most relevant normalization of these variables is the following one:

K = 1

2

∫
ρ|v|2 dV = ‖v‖2 = 〈v, v〉(2V). (26)

Here, the index (2V) indicates that the inner product refers to 2D vectors. We will also intro-
duce an inner product for 2D scalars, like the stream functionS(s, τ ), indicated by the index
(2S), and an inner product for 1D functions, like the expansion functionsRmn(s), indicated
by the index (1). However, these additional definitions will be completely determined by
the choice for the 2D vector inner product.

Let us exploit dimensionless variables by dividing out the total volumeV =πa2L, where
a measures the radial size of the domain andL the size in the ignorable direction, and the
densityρ, which is assumed to be constant. The relevant inner product for 2D vectors may
then be defined as

〈v1, v2〉(2V) ≡ 1

2π

∫ 1

0

∫ 2π

0
v∗1 · v2h2s ds dτ. (27)
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The resulting definition for the inner product of 2D scalars reads

〈S1, S2〉(2S) ≡ 1

2π

∫ 1

0

∫ 2π

0

(
1

s2

∂S∗1
∂τ

∂S2

∂τ
+ ∂S∗1
∂s

∂S2

∂s

)
s ds dτ, (28)

and for 1D functions

〈R1, R2〉(1) ≡
∫ 1

0

[
m2

s2
R1(s)R2(s)+ R′1(s)R

′
2(s)

]
s ds, (29)

where the prime denotes differentiation with respect tos. Note how the latter two inner
products have become independent of the scale factor of the conformal mapping. In the
last definition, the appearance of the constantm betrays the two-dimensional origin of this
inner product. Clearly, these 1D radial functions are always to be considered together with
the angular factorseimτ .

We will now demand the 1D expansion functionsRmn(s) to be orthonormal with respect
to the inner product (29):

〈Rmn, Rmν〉(1) =
∫ 1

0

[
m2

s2
Rmn(s)Rmν(s)+ R′mn(s)R

′
mν(s)

]
s ds= δnν . (30)

This implies that the 2D expansion functionsSmn(s, τ ), defined by Eq. (25), will be or-
thonormal with respect to the inner product (28):

〈Smn, Sµν〉(2S) = δmµδnν . (31)

Consequently, the inner product of two stream functionsS1 andS2 expressed as in Eq. (11)
will be given by the diagonal sum

〈S1, S2〉(2S) =
∞∑

m=−∞

∞∑
n=0

σ ∗1,mnσ2,mn. (32)

Similarly

K = 〈v, v〉(2V) = 〈S, S〉(2S) =
∞∑

m=−∞

∞∑
n=0

|σmn|2. (33)

In this manner, both the vector character of the flow and the stream function constraint (2)
are fully exploited.

The 2D structure of the problem may be articulated some more by considering the
expansion of the radial and angular components of the velocity ins, τ coordinates,

ihvs(s, τ ) =
∞∑

m=−∞

∞∑
n=0

σmnXmn(s)e
imτ ,

(34)

hvτ (s, τ ) =
∞∑

m=−∞

∞∑
n=0

σmnYmn(s)e
imτ ,
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where the functions

Xmn(s) ≡ (m/s)Rmn(s), Ymn(s) ≡ R′mn(s) (35)

would represent the radial and angular parts of expansionvectorfunctions. Both contribute
to the inner product of the 1D expansion functions, which may be written as

〈Rmn, Rmν〉(1) =
∫ 1

0
[Xmn(s)Xmν(s)+ Ymn(s)Ymν(s)]s ds= δnν . (36)

Parenthetically, it should be noted that the expansion functionsRmn(s), and their compan-
ions Xmn(s) andYmn(s), could also be exploited to represent compressible fluid flow. Two
differentsets of expansion coefficients,σmn andτmn, should then be used in Eq. (34) for the
representation ofvs andvτ .

In Section 3, we will construct the functionsRmn explicitly, based on the inner product
(30).

3. ORTHOGONAL POLYNOMIALS

3.1. Boundary Conditions and Reduction to Standard Form

We wish to construct the polynomial representation of the 1D expansion functionsRmn(s),
based on the orthonormality condition (30) and satisfying simple boundary conditions at
s= 0 ands= 1. Since the inner product definition (29) is not of a standard type, we need to
perform some analysis to produce the explicit expressions and to obtain the relationships
with standard (Jacobi) polynomials.

With respect to the boundary conditions, we impose the following constraints on the
polynomials:

(1) Close to the origins= 0, we demand radial behavior ofRmn(s) consistent with
the angular factorseimτ , i.e.,

Rmn ∼ s|m| (s¿ 1); (37)

(2) At the boundarys= 1, we permit two kinds of boundary conditions, corresponding
to either fixed or free boundaries. For fixed boundary problems, we demand vanishing of
the normal velocity component corresponding to eachRmn separately, i.e.,

n · v|s=1 = vs = − 1

hs

∂Smn

∂τ

∣∣∣∣
s=1

= 0⇒ Rmn(1) = 0 (n ≥ 1). (38)

Hence, to satisfy the fixed boundary condition, there is no need for superposition! For free
boundary problems, the normal velocity componentn · v should attain prescribed values6= 0
at the boundary. This is affeced by extending the set{Rmn} with one additional function
Rm0 for each value ofm, such that

Rm0(1) 6= 0, (39)

whereas the remainingRmn’s should still satisfy Eq. (38). In this case, superposition of the
Rm0’s is needed to produce the prescribed boundary values ofn · v.
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Surprisingly, these restrictive conditions still admit two distinct classes of solutions, to
be called orthogonal polynomials of the first and of the second class. We will discuss both
of them.

We implement the condition (37) by writing

Rmn(s) ≡ s|m|Tmn(s), (40)

where theTmn’s are auxiliary polynomials that facilitate the reduction of the inner product
(30) to a standard expression after integration by parts:

〈Rmn, Rmν〉(1)=
∫ 1

0
s2|m|+1T ′mn(s)T

′
mν(s) ds+ |m|Tmn(1)Tmν(1) = δnν . (41)

Hence, the condition (39) for the free-boundary components may be satisfied by the choice

Tm0(s) = const= |m|−1/2, (42)

whereas the condition (38) for the fixed-boundary components is then satisfied by imposing
Tmn(1)= 0 so that the inner product reduces to∫ 1

0
s2|m|+1T ′mn(s)T

′
mν(s) ds= δnν (n, ν 6= 0). (43)

The latter expression is now of a standard type so that theT ′mn’s may be written as Jacobi
polynomials [15]:

T ′mn(s) =
(2|m| + 2n− 1)!

√
2(|m| + n)

(n− 1)!(2|m| + n)!
Gn−1(2|m| + 2, 2|m| + 2, s)

=
√

2(|m| + n)
n∑
λ=1

(−1)λ−1(2|m| + 2n− λ)!
(λ− 1)!(n− λ)!(2|m| + n− λ+ 1)!

sn−λ (n 6= 0). (44)

Integration produces the explicit expressions for the polynomialsTmn(s) themselves so that
the polynomialsRmn(s) are determined as well.

The auxiliary polynomialsTmn(s) just produced consist of even and odd powers ofs.
The associated orthogonal polynomialsRmn(s)will be called polynomials of the first class.
As mentioned above, another set can be derived that also satisfies all of the formulated
conditions. They will be called orthogonal polynomials of the second class and designated
with a tilde. Their existence is evident from the expression (43) which may be transformed
to even powers ofs by introducing the variableξ = s2 so that the orthonormality condition
becomes

2
∫ 1

0
ξ |m|+1 dT̃mn

dξ

dT̃mν

dξ
dξ = δnν . (45)

Hence, the expression fordT̃mν/dξ may be obtained from Eq. (44) by applying the trans-
formations

T ′mn→
√

2dT̃mn/dξ, s→ξ, 2|m|→|m|. (46)
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Integration provides̃Tmn and, returning to the variables again, the explicit expressions for
the polynomialsR̃mn(s) of the second class. The transformation (46) implies the following
relationship between the two sets of polynomials,

R̃2m,n(s) = 1√
2

Rmn(s
2), (47)

i.e., them-polynomials of the first class relate to the 2m-polynomials of the second class.
Since the polynomials always have to be considered together with their angular factors, this
shows that the associated 2D expansion functionsSmn(s, τ ) and S̃mn(s, τ ) are really two
different sets.

Maybe not too surprising, properly scaled Bessel functions also satisfy the orthonormality
condition (30) and the boundary conditions (37) and (38). Moreover, they can be extended
with the same free-boundary functions as the polynomialsRmn and R̃mn. Distinguishing
them with a circumflex, they read

R̂m0(s) = |m|−1/2s|m| (≡Rm0(s) ≡ R̃m0(s)),
(48)

R̂mn(s) =
√

2

jmnJm−1( jmn)
Jm( jmns) (n ≥ 1),

wherejmn indicates the successive zeros ofJm. The reason to prefer the polynomialsRmn(s)
andR̃mn(s) in the numerics is that they are much easier to manipulate and that they obviate
the task of having to compute all those zeros.

In order to exploit the polynomialsRmν and R̃mν , all their properties should be derived.
This involves considerable and, as noted by one author [16], rather addictive algebra that
will not be presented here. The results are just stated in Sections 3.2 and 3.3.

3.2. Polynomials of the First Class

The explicit expressions for the polynomials of the first class read, forn= 0,

Rm0(s) = |m|−1/2s|m|, (49)

and forn≥ 1,

Rmn(s) =
√

2(|m| + n)s|m|
n∑
λ=1

(−1)λ(2|m| + 2n− λ)!
(λ− 1)!(n− λ+ 1)!(2|m| + n− λ+ 1)!

(1− sn−λ+1).

(50)
They satisfy the recursion relation

Rmn = −2|m| + 2n− 1

n(2|m| + n)

[{
(2|m| + n− 1)2+ n(n− 2)

(2|m| + 2n− 1)(2|m| + 2n− 3)
− s

}
(2|m| + 2n− 2)

×
√
|m| + n

|m| + n− 1
Rmn−1+ (n− 2)(2|m| + n− 2)

2|m| + 2n− 3

√
|m| + n

|m| + n− 2
Rmn−2

]
, (51)
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the differential relation

R′mn =
1

s(1− s)

[{ |m|(2|m| + 2n− 1)+ n(n− 1)

(|m| + n)(2|m| + 2n− 1)
− s

}
(|m| + n)Rmn

+ (n− 1)(2|m| + n− 1)

2|m| + 2n− 1

√
|m| + n

|m| + n− 1
Rmn−1

]
, (52)

and the differential equation

R′′mn+
1

s
R′mn−

[
m2

s2
− n(2|m| + n)

s(1− s)

]
Rmn = 0. (53)

Their computation is extremely fast and accurate: The first two polynomialsRm1 andRm2 are
computed from the explicit expression (50) and all the higher order polynomialsRmn(n≥ 3)
from the recursion relation (51), the derivativesR′mn from the differential relation (52), and,
if they are needed, the second order derivatives from the differential equation (53).

The lowest polynomials of the first class are plotted in Fig. 2. As compared to the Bessel
functions (48), their zeros are located somewhat more to the right. Another difference occurs
for them= 0 polynomials, which do not have a vanishing derivative ats= 0: R′0n(0) 6= 0,
whereasR̂′0n(0)= 0. Clearly, if this property is essential for the proper representation of
variables it will be produced automatically in the numerics by sums of pairs ofR0n’s.

FIG. 2. Orthogonal polynomials of the first class.
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3.3. Polynomials of the Second Class

The explicit expressions for the polynomials of the second class read, forn= 0,

R̃m0(s) = |m|−1/2s|m|, (54)

and forn≥ 1,

R̃mn(s) =
√
|m| + 2n

2
s|m|

n∑
λ=1

(−1)λ(|m| + 2n− λ)!
(λ− 1)!(n− λ+ 1)!(|m| + n− λ+ 1)!

(
1− s2(n−λ+1)

)
.

(55)

They satisfy the recursion relation

R̃mn = −|m| + 2n− 1

n(|m| + n)

[{
(|m| + n− 1)2+ n(n− 2)

(|m| + 2n− 1)(|m| + 2n− 3)
− s2

}
(|m| + 2n− 2)

×
√
|m| + 2n

|m| + 2n− 2
R̃mn−1+ (n− 2)(|m| + n− 2)

|m| + 2n− 3

√
|m| + 2n

|m| + 2n− 4
R̃mn−2

]
, (56)

the differential relation

R̃′mn =
1

s(1− s2)

[{ |m|(|m| + 2n− 1)+ 2n(n− 1)

(|m| + 2n)(|m| + 2n− 1)
− s2

}
(|m| + 2n)R̃mn

+ 2(n− 1)(|m| + n− 1)

|m| + 2n− 1

√
|m| + 2n

|m| + 2n− 2
R̃mn−1

]
, (57)

and the differential equation

R̃′′mn+
1

s
R̃′mn−

[
m2

s2
− 4n(|m| + n)

1− s2

]
R̃mn = 0. (58)

They are computed in the same manner as the polynomials of the first class.
The lowest polynomials of the second class are plotted in Fig. 3. As compared to the

polynomials of the first class, their zeros are moved even further to the right so that they are
further away from the Bessel functions (48) in that respect. On the other hand, them= 0
polynomials of the second class do have a vanishing derivative at the origin:R̃′0n= 0.

Finally, the unavoidable question on which of the two kinds of polynomials is to be
preferred in the numerics cannot be answered in general terms. The answer to this question
appears to depend on where the physical phenomena tend to be localized and on what
integration scheme is exploited. Our experience with stability codes indicates that the two
sets are equally good for that purpose.
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FIG. 3. Orthogonal polynomials of the second class.

4. CONCLUSIONS

We have constructed two sets of two-dimensional expansion functionsSmn(s, τ )≡
Rmn(s)eimτ and S̃mn(s, τ )≡ R̃mn(s)eimτ for the representation of the stream function of
incompressible 2D flow on an arbitrary domain, exploiting an inner product that is based
on the kinetic energy of the velocity field of the flow. The coordinatess andτ refer to a
computationalw-plane obtained from the physicalz-plane by conformal mapping, where
the physical boundary is mapped onto a circle in thew-plane. Since such a mapping needs
to be constructed only once during the computation and since it can be obtained with one-
dimensional accuracy (basically, it is just a way of computing a Cauchy integral along
the boundary curve), this transformation represents negligible overhead in the numerical
calculations. The one-dimensional expansion functionsRmn(s) andR̃mn(s) are orthogonal
polynomials with respect to a nonstandard inner product that derives directly from the ki-
netic energy of the associated 2D velocity components. Moreover, the velocity components
associated with a single polynomial satisfy regularity conditions at the origin(s= 0) and
either fixed boundary conditions at the boundary(s= 1), for the n 6= 0 components, or
free-boundary conditions, for then= 0 components. In this manner, the physical structure
of vortex dynamics in two dimensions is optimally expressed in the separate expansion
functions: For the fixed boundary case, coupling will only occur through inhomogeneities
and nonlinearities, not through the boundary conditions!

The expansion functions exploited by Verkley [1] do not have these properties since
they are based on a standard inner product for the 1D functions, so that the associated
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normalization of the velocities will not correspond to the kinetic energy. They also do not
satisfy the boundary conditions separately, but require superposition. These features might
enhance the reported problem of nonconservation of energy for the truncated polynomial
representation which comes about from the nonlinear advection term{S,∇2S} of Eq. (4).
This term vanishes for Besselfunction representationsŜmn≡ R̂mneimτ , with R̂mn given by
Eq. (48):

{Ŝmn,∇2Ŝmn} = j 2
mn{Ŝmn, Ŝmn} = 0. (59)

It does not vanish for the polynomial representation used in [1]. Our expansion functionsSmn

andS̃mn do not eliminate this term either since they are not eigenfunctions of the Laplacian,
as follows from the differential equations (53) and (58) forRmn andR̃mn. However, they do
not produce additional higher order terms through the boundary conditions.

In the tokamak stability calculations [2–8], the expansion functionsSmn and S̃mn auto-
matically avoid the problem of spectral pollution [17] because of the built-in balance of
the representation of the normal and tangential velocity components. Moreover, conformal
mapping can be replaced by other kinds of mappings that may be more relevant for the
physics of the problem, like the much exploited system of nonorthogonal flux coordinates
with a straight field line representation. Here,s andτ are replaced by

√
ψ andϑ , where

ψ is the poloidal magnetic flux andϑ is a poloidal angle constructed such that the mag-
netic field lines become straight in theψ −ϑ plane. Expansion functionsSmn(

√
ψ, ϑ) and

S̃mn(
√
ψ, ϑ), with the same orthogonal polynomials of the first and second class, have been

successfully exploited [6, 7], even though the kinetic energy is necessarily nondiagonal in
that case.

We conclude that the constructed polynomials are perfectly suited for numerical calcu-
lations and computer algebra of vortex dynamics.

ACKNOWLEDGMENTS

This work was performed as part of the research program of the association agreement of Euratom and the
“Stichting voor Fundamenteel Onderzoek der Materie” (FOM) with financial support from the “Nederlandse
Organisatie voor Wetenschappelijk Onderzoek” (NWO) and Euratom.

REFERENCES

1. W. T. M. Verkley, A Spectral model for two-dimensional incompressible fluid flow in a circular basin. I, II,
J. Comput. Phys.136, 100 (1997);136, 115 (1997).

2. J. P. Freidberg and J. P. Goedbloed, Equilibrium and stability of a diffuse high-beta tokamak, inPulsed High
Beta Plasmas, edited by Evans (Pergamon Press, Oxford, 1976), p. 117.

3. J. P. Goedbloed, Conformal mapping methods in two-dimensional magnetohydrodynamics,Comp. Phys.
Comm.24, 311 (1981).

4. J. P. Goedbloed, Free-boundary high-beta tokamaks. I, II, III,Phys. Fluids25, 852 (1982);25, 2062 (1982);
25, 2073 (1982).

5. J. P. Goedbloed, G. M. D. Hogewey, R. Kleibergen, J. Rem, R. M. O. Galv˜ao, and P. H. Sakanaka, Investigation
of high-beta tokamak stability with the program HBT, inProc. Tenth International IAEA Conference on
Plasma Physics and Controlled Fusion Research, London, 12–19 September 1984(IAEA, Vienna, 1985),
Vol. 2, p. 165.



2D INCOMPRESSIBLE FLUID FLOW 297

6. J. P. Goedbloed, R. Kleibergen, and J. Rem, Flux coordinate studies of elongated plasmas at high beta, in
Proc. 14th European Conference on Controlled Fusion and Plasma Physics, Madrid, June 22–26, 1987(EPS,
1987), Vol. III, p. 1095.

7. R. Kleibergen and J. P. Goedbloed, Alfv´en wave spectrum of an analytic high-beta tokamak equilibrium,
Plasma Phys. Contr. Fusion30, 1961 (1988).

8. G. T. A. Huysmans, T. C. Hender, O. J. Kwon, J. P. Goedbloed, E. Lazzaro, and P. Smeulders, MHD stability
analysis of high-β JET discharges,Plasma Phys. Contr. Fusion34, 487 (1992).

9. T. Theodorsen, NACA Report 411 (1931).

10. M. H. Gutknecht, Existence of a solution of the discrete Theodorsen equation for conformal mappings,Math.
Comput.31, 478 (1977).

11. P. Henrici, Fast Fourier methods in computational complex analysis,SIAM Rev.21, 481 (1979).

12. P. Henrici,Applied and Computational Complex Analysis. Vol. 3 Discrete Fourier Analysis-Cauchy Integrals-
Construction of Conformal Maps-Univalent Functions(Wiley, New York, 1986).

13. T. Garrick,Potential Flow about Arbitrary Biplane Wing Sections, NACA Report 542 (1936).

14. M. Elghaoui and R. Pasquetti, Mixed spectral-boundary element embedding algorithms for the Navier–Stokes
equations in the vorticity-stream function formulation,Comput. Phys.153, 82 (1999).

15. M. Abramowitz and I. A. Segun,Handbook of Mathematical Functions(Dover, New York, 1968).

16. J. Riordan,Combinatorial Identities(Wiley, New York, 1968).

17. R. Gruber and J. Rappaz,Finite Element Methods in Linear Ideal Magnetohydrodynamics(Springer-Verlag,
Berlin, 1985).


	1. INTRODUCTION
	2. INCOMPRESSIBLE TWO-DIMENSIONAL FLOW
	FIG. 1.

	3. ORTHOGONAL POLYNOMIALS
	FIG. 2.
	FIG. 3.

	4. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

